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1. INTRODUCTION

This contract’s objective is to further the understanding of near-earth environmental
dynamics, by conducting both In Sifu experimental studies, as well as, analytical and empirical
studies of returned instrument data. The work is to be accomplished through three programs,
subsequently identified as Task #s 1, 2 and 3. A brief review of the scope of each program and a
summary of the work performed during the report period follows. The material is presented in serial
order, with Task #1 issues appearing first in Section 2.

2. TASK #1—DIDM EFFORTS

2.1 Program Definition

The objectives of this task are two-fold. They are: (1) develop the means to reliably measure
ion densities in the range of 10' cm™ to 107 cm?, by using digital rather than analog techniques, and
thereby extend the existing dynamic range for such measurements by at least three orders of
magnitude. (2) determine the incident angle of ions into the instrument within 3° in two dimensions,
to allow accurate determination of ion drift velocities.

The work performed during the report period falls within Phase 3 of this task, under which a
Digital Ion Drift Meter (DIDM) instrument is to be fabricated, tested and calibrated. The instrument
is built for AFRL and is to be delivered to the German research organization GeoForschungsZentrum
(GFZ), for inclusion in their earth studies research satellite CHAllenging Minisatellite Payload
(CHAMP) instrument suite. DIDM will be integral to the global earth magnetic and electric field
mapping aspect of the CHAMP mission, and it is expected to make a contribution in furthering the
understanding of solar-terrestrial physics.

2.2 Summary of Activities

Phase 3 work proceeded in earnest during the report period. The impetus was the scheduled
instrument delivery date of 15 July, which GFZ repeatedly emphasized throughout, would not
change. All outstanding issues relating to hardware design were resolved by the first quarter and two
sets of both the DIDM instrument housing and the Planar Langmuir Probe (PLP) were fabricated.
The electronics design was finalized shortly thereafter as well, and printed circuit boards were
manufactured for both instruments. Subsequently, these were populated with electrical components
and the full instrument electronics assemblies were built-up. Of the two units, one was identified as
the engineering unit and used principally for hardware debugging and software development work. It
was also used for instrument qualification and initial characterization testing. The other unit was
earmarked for delivery as the flight unit and therefore treated accordingly. Additional details on
DIDM hardware is provided in section 2.3.

Some time was spent verifying the proper functionality of the completed engineering unit,
before the flight unit was actually put together and checked out. The two units were then subjected to
the required environment test exercises, almost immediately. Due to time constraints, and with the
consent of AFRL and GFZ, both the flight and engineering units were used to qualify the instrument
design in the environment tests. For instance, while the flight unit was undergoing a magnetic survey
at the NASA—Goddard space flight test facility in Maryland, the engineering unit was being subjected
to the required electromagnetic interference (EMI) and electromagnetic compatibility (EMC) tests, in
Nashua, New Hampshire. The engineering unit was also used in the thermal vacuum and
qualification vibration tests, while the flight unit was simultaneously engaged in initial instrument
characterization test exercises.




Special diagnostic software was written to monitor these tests. The structure of the defined
instrument output is such that flight software would not be the most useful diagnostic means for the
job anyway. A typical GSE display as seen with that version of the software is shown in Figure 1. It
indicates the status of the essential instrument parameters only, and as will be seen shortly, is quite a
bit different from the comprehensive GSE display developed for the flight software.
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FIGURE 1. DIAGNOSTIC SOFTWARE GSE DISPLAY

Work on the flight software progressed steadily in the latter half of the report period. The code
is written in modular fashion, with specific features incorporated as needed or as the functionality of
the particular algorithm is defined and developed. It was important to have a version of the flight
software up and running for the initial instrument characterization tests, as contrary to previous
instrument development efforts, the DIDM GSE display software that was used during the instrument
characterization and calibration exercises, was developed by another vendor. It was therefore
necessary for proper instrument-GSE interfacing that the nominal output from the instrument be
present. Thus the final structure of the instrument output had to be in place, with telemetry items
appearing in the correct location, even if most locations were zero filled. For the instrument
characterization tests, it was only necessary to have the instrument housekeeping and drift meter

image data features fully functional, and this was done.

A key feature of the DIDM-2 development effort was the ability to remotely upload new
versions of the operating software to the instrument. This made it possible to put the latest version of
the code into the instrument, at any convenient time. It could be done while the instrument was still
in the test chamber for example, and greatly aided the characterization and calibration process, in
terms of the time made available to exercise the instrument. Unlike the manner in which the matter
was handled in the past, it is no longer necessary to lose at least a day of test time in having to take
the instrument out of the test chamber, opening it up to replace the PROM in which the operational
software resides, reinstalling the instrument in the test chamber and waiting at least twenty four hour
period for the sensors to properly outgas, before testing can resume. Rather, the latest software can be
transferred from the developer's PC at Amptek, via the File Transfer Protocol (FTP) on the internet,
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directly to the remotely located GSE laptop computer which controls the instrument. In a timespan of
seconds, the new code can then be loaded into the instrument and immediately thereafter calibration
activities can resume. Considerably more instrument runtime is now afforded with this ability, to
evaluate new software and to conduct a more exhaustive test campaign.

First the engineering unit, and then the flight unit, were handed over to AFRL for initial
characterization and calibration testing. The rush to complete these exercises abated significantly in
the last quarter, when GFZ finally changed their thus far steadfast position, and announced that the
spacecraft hardware was not in a state where it could support payload delivery at the scheduled
delivery times. A minimum delay of two months was acknowledged. Responsibility for procurement
and assembly of the sensor assembly portion of the instrument remained with AFRL, as it was for
DIDM-1. The exception in this regard was provision of the wedge & strip anodes, for which Amptek
retained its previous responsibility for design and manufacture. Details on the wedge & strip anode
functionality and development effort, which proved to be a much more difficult proposition than was
first envisaged, is presented in section 2.4. An immediate concern for both parties at the start of the
characterization tests, was how well the measures taken by AFRL to refine the sensor design and
improve measurement accuracy, worked. The intent was to reduce the size of the electron cloud
which exited the micro-channel plate detectors, in response to an incident ion, and falls onto the
positional sensitive wedge & strip anode, so that better positional resolution might be achieved. The
definitive assessment is yet to be made, but preliminary indications show that these sensor
improvements were successful. The drift meter image is much more tightly defined than has been
previously observed. An illustrative example of this appears in Figure 2. It shows a map of the
pixels being stimulated on the anodes of both sensors, while the instrument is in an ion beam, in the
test chamber. Note that the active area is confined to a relatively small sector of the entire map,
which is very desirable. The nominal display is in color, so that pixel counts can be easily discerned
through the use of the associated color legend.
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2.3 DIDM-2 Hardware

The new DIDM instrument
(shown in Figures 3 and 4) inherited much
from its predecessor DIDM-1. Indeed the
original proposal was to provide a
duplicate of DIDM-1, incorporating only
the changes necessary to make the
instrument suitable for flight on the
CHAMP spacecraft. Accordingly, the two
instruments are virtually identical in
appearance. However, significant changes
have beeen made to DIDM-2, in part,
to incorporate lessons learned from
DIDM-1 and to satisfy environment
requirements for the CHAMP
mission. DIDM-2 was also made
slightly longer to accommodate the
electronics for the Planar Langmuir
Probe (PLP), which was not a
feature of DIDM-1.

The mounting arrangement of
the instrument was changed from the
separate, detachable, mounting rails used
in the previous design, to one in which the
mounting rails are now integral to the
instrument housing. The DIDM-1
design was shown to have some
inadequacies in its thermal transfer
capability, ~which  complicated the
temperature control job for the instrument
after integration on a spacecraft.
Additionally, the electronics enclosure
has also been thickened, from the 0.062"
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drawn shell used previously, to 0.190". This was
done to provide as much shielding as possible,

for the electronic components within the box.

From design guidelines provided by the

CHAMP program office, the thickened walls will ensure that the total dose received from high energy
particles, inside the enclosure, be less that 1k Rads per year, in silicon. This is significant shielding
since the program requirement is for survivability with a maximum of S5k Rads per year. The inherent
radiation hard capabilitity of most of the electronic components ensures that the requirement is
satisfied, but a few components are used which were not specifically designed to be rad-hard, and for
these the shielding provided by the enclosure will be significant (although not critical) to their
survival. The Dose Depth Curve for the CHAMP mission is shown in Figure 5.

Aluminum Absorber Thickness (MM)

FiGURE 5: CHAMP Dose DEPTH CURVES




2.4 Wedge & Strip Anode

Incident ions are detected within the sensor elements at the front of the DIDM instrument.
The particles are first focused onto a MicroChannel Plate (MCP) detector, which generates an
electron cloud, that strikes a uniquely designed wedge & strip anode, at a position corresponding to
the incident angle of the ion at the sensor aperture. The location on the anode is provided by the
respective amplitude of signals from the wedge (W), strip (S) and z (area between wedge and strip)
elements on the anode. There are 120 distinct segments on the DIDM-2 anode, with w, S, and Z
elements within each. Polar angle (&) is determined from the wedge elements, which are of constant
size throughout, but vary linearly in area from the inner to outer regions of the anode. Minimum &
comes from a smaller wedge area than does maximum 6. In an equivalent fashion, azimuth angle (¢)
is determined from strip elements, which are of a different size in each segment. The largest strip
produces maximum ¢, while the smallest produces minimum ¢. The general relationships between
wedge & strip elements and incident angles are:

Kex W
W+S+2Z°

__Kgx S
=W+s+z

where Kg and Ky are the associated constants which ensure that the determined angle falls within
the acceptance cone for the aperture (designed to be +45°, but limited to +35° in DIDM-2 sensors).
For the wedge & strip design to work properly, it is necessary that the diameter of the impinging
electron cloud be approximately two elements wide. Smaller spot sizes could result in incorrect
reporting of location, while much larger spots will not be as accurate. The anode design is optimized
for a spot size of ~0.060". A dimensioned schematic of the anode and an enhanced view of a small
portion of the surface, clearly showing the anode elements and a typical electron spot, is shown in

Figure 6.

@ =

FIGURE 6:
WEDGE & STRIP ANODE PATTERN ELEMENTS
AND TYPICAL ELECTRON SPOT SIZE




To more easily identify the impact location on the anode surface, the active area (i.e. that portion
within which valid events could occur) is mapped into 16 x 128 pixels. Polar angle () is mapped
into 16 radial elements (#) and azimuth angle (¢) is mapped into 128 circumferential elements (¢). It
is therefore possible to identify an incident particle location to within any one out of a total of 2048
pixels. Each pixel is uniquely identified by combining its ring and column addresses. Example: rlcl,
r5¢99, r16¢128 etc.

.4995" Row 12 Begins

2.4.1 Active Area

The active area is that portion of
the anode surface within which electrons
are expected to fall. It is the physical
extent encompassed by the rows in the
pixel map, and is shown as the unshaded
region in the schematic shown in Figure 7.
The innermost limit is determined by an

annulus on the MCPs. This limits the B :
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EXTENT OF ANODE'S ACTIVE AREA

2.4.2 Zero-Crossing Mask

It is necessary to clearly demarcate the boundary between azimuth angles 0° and 360°. i.e.
between c1 and c128 on the pixel array. Due to the physical size of the anode elements, which by
design are much smaller, the output electron cloud will overlap this boundary, and if an incident
trajectory were to produce a response in the area, a false azimuth position halfway between the two
ends will be reported. It is therefore important that this outcome be precluded. The ideal way to do
so would be to use MCPs that are not responsive in the area in question, and while this is no doubt
possible to achieve practically, the cost of such a custom MCP fabrication effort is prohibitive. The
next best thing therefore, is to put a physical barrier in position above the anode surface, which
prevents the electron

cloud from getting to the :
boundary crossing area.

In DIDM, the zero- N 1T
crossing mask is actually

placed between the two Rots e W R
halves of the chevron v n
ANODET

|
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up, which might preferentially steer the exiting
electron cloud and/or give rise to capacitive coupling
effects at the anode.

FIGURE 8: ZERO CROSSING MASK




The Zero Crossing Mask is made from thin (0.001"), electro-polished stainless steel and is
designed such that an electron spot size diameter of 0.060" will not bridge the minimum and
maximum azimuth elements. A dimensioned schematic is shown in Figure 8.

2.5 Anode Fabrication

Making DIDM anodes is a challenging task for the following reasons: (i) feature sizes within
the DIDM anode pattern and (ii) the size of the anode. The width of the line which separates the
wedge (w), strip (s) & intermediate (z) areas of the pattern is 5 um wide. The minimum width of
these areas is also ~5 um. With feature sizes of this magnitude, photo-lithographic techniques must
be used to reliably and cheaply generate multiple copies of the pattern. On the other hand, the anode
occupies an area of almost one square inch and this is inordinately large to be patterened by this
means. As an illustration, integrated circuits (ICs) are routinely made by photo-lithographic
techniques, by mass production means these days. However, the typical size of an IC is less than a
tenth the size of the DIDM anode and the difficulty of achieving a satisfactory yield using photo-
lithographic fabrication techniques, increases almost exponentially with pattern size.

2.5.1 Photo-lithographic process

The photo-lithographic process is a very exacting one, in that particulate contamination has to
be controlled to the utmost extent. With these feature sizes, dust, lint or hair particulates could easily
give rise to pattern defects, which would be manifested, in undesirable shorts or open circuits
somewhere on the pattern. In the integrated circuit (IC) fabrication business where the techniques
were developed, it is usual to anticipate a certain loss percentage due to defects. Given that the
typical IC area is one tenth the size of the DIDM anode, the nature of this concern is clearly different
here. Making DIDM anodes is more exacting in this regard since not only is the pattern very much
larger than usual, but since only a handful are being made, in principle only zero defects can be
tolerated.

The steps involved are as follows: (i) a master copy of the pattern is made by writing (either
by laser or e-beam) into a soda lime substrate, which is coated first with Chromium (Cr) and then
with photo-resist. The actual writing is done into the photo-resist material, and the pattern is actually
etched into the Cr. Typically, these masks are 0.090" thick and the Cr is = 1000 A thick.

(i) contact prints of the master are then made. To do this, a blank quartz substrate is
metalized (wafer and substrate are synonymous terms. They refer to the quartz [Si0,] material from
which the anodes are made. 4" x 4" square and 3Y2" dia. round ones are the two sizes that have been
used for DIDM. Vendors prefer one or the other geometry) and photo-resist coated. The master is
then laid on top of the photo-resist-coated/metalized substrate and back illuminated with UV. The
pattern is transferred into the photo-resist by this means, and then etched into the substrate.

The only photo-resist-coated/metalized substrate which can be bought off-the-shelf are the Cr
substrates for making masks. All others must be custom made. This fact introduces several
difficulties. The most significant of these are: (i) finding suitable vendors to do the work. (ii) finding
ones willing to provide the small quantity required, at an affordable price. The issues involved here
will be addressed in turn.

Mask making houses routinely make IC patterns of even tighter feature sizes (state-of-the-art
is now approaching 0.1pum), albeit on much smaller than anode sizes, and in quantities of hundreds of
thousands. They start with procured photo-resist coated Cr substrates, which are defect free. i.e.
there is virtually no particulate matter in the photo-resist material or in the Cr coating. The
manufacturing environment in which these processes are carried out is such that process defects are
eliminated. For example, photo-resist is usually applied in a class 1 environment (which means one
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particulate per cubic centimeter or less). Also, since only Cr is etched and the thickness is unvarying,
the etching techniques to reliably achieve the minimum feature size has become well known and the
process is very much a science rather than the art-like craft it is otherwise.

2.5.2 Why custom-made

These advantages are all lost in the custom-made realm of the DIDM anodes. To begin with, it
is necessary to find a vendor who is willing to undertake the entire project. i.e. metalization, photo-
resist coat, patterning and etch. Also, in order to minimize cost, the vendor should execute all of
these steps himself. There are only a handful of companies throughout the country who advertise this
capability, for the quantities of interest to the program. Such a vendor is unlikely to have a class 1
facility in which to do the work. The usual quoted capability is class 10,000. Inevitably then, the
possibility of process defects will be significantly increased. In addition, because the metalization
required is not simply Cr, finding the right combination of etch concentration, time and temperature is
very much an art rather than a science, and this adds considerably to the yield equation. It can be
expected that fewer good parts will be realized than would be the case if regular production methods
were utilized.

2.5.3 Process complexity

For reasons which will be explored in a later section, it is required that the anodes be Gold
(Au) coated. Au will not easily adhere to quartz, so it is necessary to have a binding layer of another
material underneath the Au. This could be Cr, but Nichrome (NiCr), Titanium/Tungsten (Ti/W) and
Copper (Cu) are also suitable alternatives. All have been tried. The choice of the binding layer is a
vendor's choice and is dependant on his metalization capability and etch expertise .

The metalization process is carried-out in a vacuum chamber. The techniques used are
vacuum sputtering or evaporation of the metals from a heated bath to the target substrate. By
sequentially heating the metals, each can in-turn, be made to coat the substrates without any adhesion
problems. One vendor used a binding layer of 300 A of Cr, underneath 2000 A Au. 300 A Ti/W was
used to coat the Au, on top of which the photo-resist was placed. The pattern was imaged into the
photo-resist. The Ti/W was removed in the final wet etch step. In addition to the usual two photo-
resist etch steps then, three metal etch steps were executed to remove Ti/W, Au and Cr. It must be
emphasized that there is no formulaic solution to carrying out these metal etch steps. It is very much
a trial and error (acquired through experience) process to get to the point where the pattern is properly
completed with the required feature sizes. Over etching to achieve an unacceptable pattern occurs
better than 50% of the time, and equally unacceptable patterns frequently result from under etching.

One reason why other metals are used as the binding layer material, is that compared to Cr,
they are easier to etch. Ti/W for example, is supposed to be more forgiving than Cr and hence is not
as easy to over-etch. The etchant for NiCr is supposedly not as concentration critical and hence is
easier to use, in that regard.

2.5.4 Alternate approach

The DIDM anode was initially conceived with Cr coated quartz substrates in mind. The ease
with which IC masks are made was known, and it was thought that replicating the process for the
anode pattern would be trivial. It has not turned out that way. The quartz anodes are too resistive for
use in this application. The net impact is that the z signal becomes non-linearly distorted over the
path length to the anode contacts, and the signal electronics consequently generate a false report for
the location of incident ions.




This is not a matter which could be compensated for or calibrated out. The only solution lies
in lowering the resistivity of the surface material. To this end, various thickness of Cr were
investigated. In the range from nominal thickness (1000A) to maximum available (8000A) the
resistivity of Cr varies from 40 ohms/square to 2 ohms/square. The measured value for ~2000 A of
Au was 0.4 ohms/square, which says that Au is still at least two orders of magnitude better.
Electroplating the easy-to-obtain Cr anodes with Au has also been tried. Several commercial
electroplating houses were approached to attempt either electrolytic or electroless plating. After
several weeks and many attempts, all reported that their initial fears were confirmed. i.e. Cr is too

passive a metal to be electroplated with Au.
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3. TASK #2—DATA ANALYSIS EFFORTS

3.1 Program Definition

The objective of this task is to analyze the interactions between rockets and spacecraft with
the space environment, in order to advance the understanding of dynamic space plasma effects.
Efforts have been directed toward the analysis of data from the Tethered Satellite Systems flights
(TSS-1 and TSS-1R), and the Space Wave Interactions with Space Plasmas Experiment (SWIPE) flown
on the Observation of Electric-field Distributions in Ionospheric Plasma: a Unique Solution
(OEDIPUS-C) mission and most recently, the data from the LAngmuir TURbulence (LATUR) rocket
mission.

The work is concerned with characterizing electron beam-space plasma interactions and the
dynamic I-V particulars of a magnetized plasma. Such knowledge of the space plasma environment
and of its interactions with spacecraft is critical to the design of future platforms in space. It is
expected that the work will advance the state-of-the-art capability of Air Force assets in the low earth
orbit environment.

3.2 Summary of Activities

Work continued on the analysis of the OEDIPUS-C and SPREE datasets throughout the report
period. In the latter half of the year, following the successful launch of the Langmuir Turbulence
rocket mission from the NASA launch range in Puerto Rico, LaTUR data were added to the effort.
Customized analysis software was written under this task, in order to look at the returned data. Since
the content and format of the datasets differ in
fundamental ways, it was impossible to use
previously written code for the job. Taking
advantage of lessons learned from previous
efforts in this regard, the new software
accommodated the science user's need for
flexibility in choosing various data parameters
for analysis and display, to thereby optimize the
science exploitation effort. Accordingly, one
enhancement that was added to the LaTUR data
analysis capability is the means for the user to |~ :
easily design individual displays to suit |[[ZHF 17
different scientific aspects and aims. "j‘.}‘;ﬂ;':h{zg.}.g 2710
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The OEDIPUS-C display software was also upgraded during the report period. The latest
version now provides better synchronization to the data and some additional features. These include:
ASCII file dumps of data for detailed numerical analysis, energy-frequency matrix with variable
accumulation times, relative zone normalization by comparison of counts at low energy ranges, MAF
identification, and a first attempt at automatic frequency analysis of the buncher data. The analysis
capability of the software has also been improved, to the point where it is now capable of calculating
and showing electron fluxes and distribution functions. Much of the improvement was prompted by
the feedback received from participants at two scientific gatherings which the principal investigator
for this work —Dr. Paul Gough, attended during the report period.

Two papers were presented at the Spring AGU meeting in Boston. The first entitled
MegaHertz Electron Modulations observed on TSS-IR, dealt with SPREE data, whilst the other,
Sounder Accelerated Electrons observed on OEDIPUS-C, presented new observations from the
OEDIPUS-C mission. The encouraging response to the material gave added impetus to the work that
was underway, in the period leading up to the first OEDIPUS-C experimenters meeting since the
launch. Data from the OEDIPUS-C end of flight period was of particular interest, because that is
where the plasma frequency increases above the electron gyrofrequency. This period is similar to
TSS-1 and TSS-1R scenarios as well as to the situations prevailing in previous natural aurora rocket
particle correlator measurements. The OEDIPUS-C experimenters meeting convened in Montreal
towards the end of the report period, and by all accounts the material presented was well received.

Additional work is on-going to further analyze flight data for publication. Material is being
prepared for an upcoming OEDIPUS paper to be published in the Journal of Geophysical Research,
and a TSS-1R megaHertz electron modulations paper, which has been completed and was recently
submitted to the Journal of Geophysical Research. The list of publications realized thus far from this

effort is in section 3.5.

3.3 LaTUR Data Display Software

As previously mentioned, the LaTUR software has a startup §sub Frame lsb: OEH
form (see Figure 9) that permits easy customization of the data :Sub Frame msb: DOH
display. Any combination can be shown of the 8 Forward and 8 Aft ‘gypt frame Ish: D8H
electron zones for electron spectra, as well as, a selection from the 8 gyt frame msb: 05H
connected to the buncher electronics for the MHz displays. Also, the i;:Enc maifrm Isb:  AEH |
plot size has three possible values to best fit the data displayed onto o aifrm isb: D2H ?*
the PC screen. v.,il'Enc majfrm msb: 00H

Figure 10 shows the instrument state of health monitor for the ‘Enc minfrm Isb: FOH
various housekeeping parameters. Two all-flight spectrograms are :Enc minfrm isb: 4FH
shown next in Figures 11 and 12, for the Forward and Aft electron Enc minfrm msb: 1AH
zones respectively. The plots are nominally in color, but appear here '\nutput_prn Isb: OOH

in monochrome. Detailed short plot duration displays are als0 guput PTR 3IFH
available for each of the seven zones shown. Segment status: 4AH |
;Sweep 1D : o7H
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StatusWord msb: 00H

FIGURE 10: LaTUR STATE-OF-HEALTH
MONITOR DiSPLAY

- 12 -



4V
1939e¥

F&D 2

4e¥
193V

FP¥D 3

i

i

eV
193V

‘FWD 4

Py

I s
TR T

wr

de¥
198e¥

5

FWD

4e¥
193eV

FwD &

eV
198e¥

PWD 7

- 0NN |

B Ty =1

- w0

J- woo

- ONOO

1 MHOQ

- ONIOQ

- NGO

L aad ¥y Loe

fe¥

hime
seconds

Flight

CTRA FOR FORWARD

o~
=
o

1. ALL FLIGHT SP

P

£8.

SENSOR ELECTRON ZON

«“y

ok




- o

- W0
X )

Beloycees
S ]

5,

; e e ﬁﬁ&i&&%f&m‘

SERL N

g tome

- ONINQ

2L T R e

& - NGO
- el
> -,
% & 38 %8 33 53 : x
~+ &0 - &0 < 0 < N -3 < £
- - - ~ Lad = B
o=

seconds

AFT 2

AFT 3
AFT 4
AFT 5
AFT 6
AFT

ES.

=

CTRON ZON

1=

£ 12: ALL FLIGHT SPECTRA FOR AFT
SENSOR

FiGUR




Clicking the mouse once on either of Figures 11 or 12 above, results in the 2-D electron
spectrum seen in Figure 13(a). Clicking once more yields the actual electron count spectrum listing

(Figure 13(b)).
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The absolute geometric factors have now been included within the software so that both
relative zone plots now match better (Figure 14). Absolute flux values are also now available (Figure
15 (a). (b)). Fine resolution MMU plots of electron response to the transmitter (Figure 16) pulse
during an electron step have been modified to give a better plot for comparative response studies:
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3.5 Recent Scientific Publications from TSS-1/1R SPREE and OEDIPUS-C
3.5.1 Published:

Gough, M.P., Hardy, D.A., Burke, Oberhardt, M.R., Gentile, L.C., Huang, V.Y., Cooke, Raitt, W.J., Thompson,
D.C. McNeil, W. and Bounar, K. Heating and low-frequency Modulation of electrons Observed during Electron
Beam Operations on TSS-1; Journal of Geophysics Research, Vol 102, 1997, pp.17335-17357.

Gough, M.P., Burke, W.J., Hardy, D.A., Huang, C.Y., Gentile, L.C., Rubin, A.G., Oberhardt, M.R., Thompson,
D.C. and Raitt, W.J. MegaHertz Electron Modulations Observed during TSS-1R Beam Emission Experiments;
Geophysics Research Letters, Vol 25, 1998, pp.441-444.

Gough, M.P., Hardy, D.A., Oberhardt, M.R., Burke, W.J., Gentile, L.C., Thompson, D.C. and Raitt, W.J.
SPREE Measurements of Wave-particle Interactions Generated by the Electron Guns on TSS-1 and TSS-1R;
Advances in Space Research, Vol.21, No.5, 1998, pp.729-733.

Gough, M.P., Hardy, D.A., and James, H.G. First Results from the Particle Correlators on the OEDIPUS-C
Sounding Rocket; Advances in Space Res., Vol 21, No 5, 1998, pp.705-708.

Gough, M.P. Particle Correlators in Space: performance, Limitations, Successes and the Future; pp 333-338.
Measurement Techniques in Space Plasmas- Particles, AGU Monograph 102, 1998 ISBN 0-87590-085-2

Huang, C.Y., Burke, W.J., Hardy, D.A., Gough, M.P., Olson, D.G., Gentile, L.C., Gilchrist, B.E., Bonifazi, C.,
Raitt, W.J., and Thompson, D.C. Cerenkov Emissions of lon Acoustic like Waves Generated by Electron
Beams emitted during TSS 1R; Geophysics Research Letters, Vol 25, 1998, pp.721-724.

3.5.2 Recently submitted to Journals:

Rubin A.G., Burke W.J., Gough M.P., Huang, C.Y., Gentile L.C., Hardy, D.A., Thompson, D.C., Raitt, W.J.
Megahertz Electron Modulations during TSS 1R; submitted to Journal of Geophysical Research, September
1998.

Huang C.Y., Burke W.J., Hardy, D.A., Gough, M.P., James, H.G.,, Villalon, E., and Gentile, L.C. Electron

acceleration by MHz waves during OEDIPUS-C; submitted to Journal of Geophysical Research. September
1998.
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4. TASK #3—LaTUR EFFORTS

4.1 Program Definition

The objective of this task is to develop techniques to design and build miniaturized, low
power and considerably more capable space experiment instrumentation. Current requirements
necessitate reductions in size, mass, power consumption and telemetry bandwidth of diagnostic
instruments on space platforms. A principal area of interest is in improving the performance of
particle correlator hardware, while simultaneously reducing the size, mass and power requirements.
Working with the Space Science Center (SSC) at the University of Sussex in the UK, Amptek, Inc.
has been at the forefront of correlator development. The first correlator to be flown was provided by
SSC in 1980. Since then, the collaborative effort has continually improved the capability of the units,
by making use of the increased processing ability of new generations of hardware elements such as

microprocessors and programmable gate arrays.

4.2 Summary of Activities

An improved correlator design was incorporated into the Data Processing Unit (DPU) that was
provided by Amptek, Inc. for the Energetic Particle Instrument (EPI) suite, on the Langmuir
TURbulence (LaTUR) rocket mission. The unit was completed after a period of intense activity,
early in the report period. It was subsequently subjected to the required thermal and vibration tests,
and then delivered by AFRL for integration onto the LATUR rocket at the NASA Wallops Flight
Facility around the middle of the report period. However, during the system vibration test of the
LaTUR payloads, it was observed that the telemetry coming out of the DPU became anomalous
during the thrust axis sine vibration test, at around 120 Hz. The state of the instrument’s output was
such that meaningless or "garbage" data was being returned, even though internal timing and event
sequencing operations appeared to be nominal. When power to the unit was recycled after the test,
normal operation was restored and the instrument properly survived subsequent random vibration
testing in all three axis. It was determined after the sine vibration test, that due to structural resonance
at the mounting location of the DPU, the instrument was being subjected to vibration levels in excess
of three times the program limit, at the onset of the anomaly.

The DPU was returned to Amptek, Inc. where its anomalous output state was reproduced. It
was demonstrated that in certain instances the instrument’s “watchdog” timer (a software initiated
instrument reset operation) was deficient. Under nominal conditions, the instrument checks for
anomalous operational states every second and if any are detected operations are automatically re-
initialized. This feature was clearly not working properly. The DPU operation software was
rewritten to make the watchdog timer more effective. The particular deficiency which came to light
at Wallops was eliminated and subsequent bench testing could not reproduce the condition. Al of
the nominal functional states of the instrument were also checked to ensure that the software changes
did not have any unexpected impact on normal operation. The DPU was restored to flight
configuration and retested to specified LaTUR payload test levels for sine and random vibration
tests. The instrument performed nominally throughout the exercises.

The LaTUR rocket was launched on 11 Mar 98 at 23:11Z from the NASA launch range in
Puerto Rico. The principal focus of this mission was to investigate wave-particle interactions as the
rocket traversed a region of the ionosphere heated by a high power RF source from the Arecibo
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Ionospheric Modification Facility. AFRL's EPI payload suite functioned nominally throughout the
mission. EPI data were acquired and stored on the GSE (provided to AFRL by Amptek. Inc.) from
both the forward and aft sensors. It was also observed that the returned HFB data properly switched
from the forward to aft sensor after the payload switch command was sent to the DPU midway
through rocket ascent. An overall picture of the returned data is shown in Figure 16. It is a nominal
color plot, which shows the response (electron counts) from all eight zones of both the forward and
aft ElectroStatic Analyzers (ESA). With the LaTUR mission now at an end, all work on this task is
similarly concluded.
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